(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
shuffle(Cons(x, xs)) → Cons(x, shuffle(reverse(xs)))
reverse(Cons(x, xs)) → append(reverse(xs), Cons(x, Nil))
append(Cons(x, xs), ys) → Cons(x, append(xs, ys))
shuffle(Nil) → Nil
reverse(Nil) → Nil
append(Nil, ys) → ys
goal(xs) → shuffle(xs)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
shuffle(Cons(x, xs)) → Cons(x, shuffle(reverse(xs)))
reverse(Cons(x, xs)) → append(reverse(xs), Cons(x, Nil))
append(Cons(x, xs), ys) → Cons(x, append(xs, ys))
shuffle(Nil) → Nil
reverse(Nil) → Nil
append(Nil, ys) → ys
goal(xs) → shuffle(xs)
S is empty.
Rewrite Strategy: INNERMOST
(3) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
Cons/0
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
shuffle(Cons(xs)) → Cons(shuffle(reverse(xs)))
reverse(Cons(xs)) → append(reverse(xs), Cons(Nil))
append(Cons(xs), ys) → Cons(append(xs, ys))
shuffle(Nil) → Nil
reverse(Nil) → Nil
append(Nil, ys) → ys
goal(xs) → shuffle(xs)
S is empty.
Rewrite Strategy: INNERMOST
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
Innermost TRS:
Rules:
shuffle(Cons(xs)) → Cons(shuffle(reverse(xs)))
reverse(Cons(xs)) → append(reverse(xs), Cons(Nil))
append(Cons(xs), ys) → Cons(append(xs, ys))
shuffle(Nil) → Nil
reverse(Nil) → Nil
append(Nil, ys) → ys
goal(xs) → shuffle(xs)
Types:
shuffle :: Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
reverse :: Cons:Nil → Cons:Nil
append :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
shuffle,
reverse,
appendThey will be analysed ascendingly in the following order:
reverse < shuffle
append < reverse
(8) Obligation:
Innermost TRS:
Rules:
shuffle(
Cons(
xs)) →
Cons(
shuffle(
reverse(
xs)))
reverse(
Cons(
xs)) →
append(
reverse(
xs),
Cons(
Nil))
append(
Cons(
xs),
ys) →
Cons(
append(
xs,
ys))
shuffle(
Nil) →
Nilreverse(
Nil) →
Nilappend(
Nil,
ys) →
ysgoal(
xs) →
shuffle(
xs)
Types:
shuffle :: Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
reverse :: Cons:Nil → Cons:Nil
append :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))
The following defined symbols remain to be analysed:
append, shuffle, reverse
They will be analysed ascendingly in the following order:
reverse < shuffle
append < reverse
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
append(
gen_Cons:Nil2_0(
n4_0),
gen_Cons:Nil2_0(
b)) →
gen_Cons:Nil2_0(
+(
n4_0,
b)), rt ∈ Ω(1 + n4
0)
Induction Base:
append(gen_Cons:Nil2_0(0), gen_Cons:Nil2_0(b)) →RΩ(1)
gen_Cons:Nil2_0(b)
Induction Step:
append(gen_Cons:Nil2_0(+(n4_0, 1)), gen_Cons:Nil2_0(b)) →RΩ(1)
Cons(append(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b))) →IH
Cons(gen_Cons:Nil2_0(+(b, c5_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
Innermost TRS:
Rules:
shuffle(
Cons(
xs)) →
Cons(
shuffle(
reverse(
xs)))
reverse(
Cons(
xs)) →
append(
reverse(
xs),
Cons(
Nil))
append(
Cons(
xs),
ys) →
Cons(
append(
xs,
ys))
shuffle(
Nil) →
Nilreverse(
Nil) →
Nilappend(
Nil,
ys) →
ysgoal(
xs) →
shuffle(
xs)
Types:
shuffle :: Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
reverse :: Cons:Nil → Cons:Nil
append :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
Lemmas:
append(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b)) → gen_Cons:Nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))
The following defined symbols remain to be analysed:
reverse, shuffle
They will be analysed ascendingly in the following order:
reverse < shuffle
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
reverse(
gen_Cons:Nil2_0(
n518_0)) →
gen_Cons:Nil2_0(
n518_0), rt ∈ Ω(1 + n518
0 + n518
02)
Induction Base:
reverse(gen_Cons:Nil2_0(0)) →RΩ(1)
Nil
Induction Step:
reverse(gen_Cons:Nil2_0(+(n518_0, 1))) →RΩ(1)
append(reverse(gen_Cons:Nil2_0(n518_0)), Cons(Nil)) →IH
append(gen_Cons:Nil2_0(c519_0), Cons(Nil)) →LΩ(1 + n5180)
gen_Cons:Nil2_0(+(n518_0, +(0, 1)))
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
(13) Complex Obligation (BEST)
(14) Obligation:
Innermost TRS:
Rules:
shuffle(
Cons(
xs)) →
Cons(
shuffle(
reverse(
xs)))
reverse(
Cons(
xs)) →
append(
reverse(
xs),
Cons(
Nil))
append(
Cons(
xs),
ys) →
Cons(
append(
xs,
ys))
shuffle(
Nil) →
Nilreverse(
Nil) →
Nilappend(
Nil,
ys) →
ysgoal(
xs) →
shuffle(
xs)
Types:
shuffle :: Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
reverse :: Cons:Nil → Cons:Nil
append :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
Lemmas:
append(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b)) → gen_Cons:Nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
reverse(gen_Cons:Nil2_0(n518_0)) → gen_Cons:Nil2_0(n518_0), rt ∈ Ω(1 + n5180 + n51802)
Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))
The following defined symbols remain to be analysed:
shuffle
(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
shuffle(
gen_Cons:Nil2_0(
n747_0)) →
gen_Cons:Nil2_0(
n747_0), rt ∈ Ω(1 + n747
0 + n747
02 + n747
03)
Induction Base:
shuffle(gen_Cons:Nil2_0(0)) →RΩ(1)
Nil
Induction Step:
shuffle(gen_Cons:Nil2_0(+(n747_0, 1))) →RΩ(1)
Cons(shuffle(reverse(gen_Cons:Nil2_0(n747_0)))) →LΩ(1 + n7470 + n74702)
Cons(shuffle(gen_Cons:Nil2_0(n747_0))) →IH
Cons(gen_Cons:Nil2_0(c748_0))
We have rt ∈ Ω(n3) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n3).
(16) Complex Obligation (BEST)
(17) Obligation:
Innermost TRS:
Rules:
shuffle(
Cons(
xs)) →
Cons(
shuffle(
reverse(
xs)))
reverse(
Cons(
xs)) →
append(
reverse(
xs),
Cons(
Nil))
append(
Cons(
xs),
ys) →
Cons(
append(
xs,
ys))
shuffle(
Nil) →
Nilreverse(
Nil) →
Nilappend(
Nil,
ys) →
ysgoal(
xs) →
shuffle(
xs)
Types:
shuffle :: Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
reverse :: Cons:Nil → Cons:Nil
append :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
Lemmas:
append(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b)) → gen_Cons:Nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
reverse(gen_Cons:Nil2_0(n518_0)) → gen_Cons:Nil2_0(n518_0), rt ∈ Ω(1 + n5180 + n51802)
shuffle(gen_Cons:Nil2_0(n747_0)) → gen_Cons:Nil2_0(n747_0), rt ∈ Ω(1 + n7470 + n74702 + n74703)
Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n3) was proven with the following lemma:
shuffle(gen_Cons:Nil2_0(n747_0)) → gen_Cons:Nil2_0(n747_0), rt ∈ Ω(1 + n7470 + n74702 + n74703)
(19) BOUNDS(n^3, INF)
(20) Obligation:
Innermost TRS:
Rules:
shuffle(
Cons(
xs)) →
Cons(
shuffle(
reverse(
xs)))
reverse(
Cons(
xs)) →
append(
reverse(
xs),
Cons(
Nil))
append(
Cons(
xs),
ys) →
Cons(
append(
xs,
ys))
shuffle(
Nil) →
Nilreverse(
Nil) →
Nilappend(
Nil,
ys) →
ysgoal(
xs) →
shuffle(
xs)
Types:
shuffle :: Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
reverse :: Cons:Nil → Cons:Nil
append :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
Lemmas:
append(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b)) → gen_Cons:Nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
reverse(gen_Cons:Nil2_0(n518_0)) → gen_Cons:Nil2_0(n518_0), rt ∈ Ω(1 + n5180 + n51802)
shuffle(gen_Cons:Nil2_0(n747_0)) → gen_Cons:Nil2_0(n747_0), rt ∈ Ω(1 + n7470 + n74702 + n74703)
Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n3) was proven with the following lemma:
shuffle(gen_Cons:Nil2_0(n747_0)) → gen_Cons:Nil2_0(n747_0), rt ∈ Ω(1 + n7470 + n74702 + n74703)
(22) BOUNDS(n^3, INF)
(23) Obligation:
Innermost TRS:
Rules:
shuffle(
Cons(
xs)) →
Cons(
shuffle(
reverse(
xs)))
reverse(
Cons(
xs)) →
append(
reverse(
xs),
Cons(
Nil))
append(
Cons(
xs),
ys) →
Cons(
append(
xs,
ys))
shuffle(
Nil) →
Nilreverse(
Nil) →
Nilappend(
Nil,
ys) →
ysgoal(
xs) →
shuffle(
xs)
Types:
shuffle :: Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
reverse :: Cons:Nil → Cons:Nil
append :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
Lemmas:
append(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b)) → gen_Cons:Nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
reverse(gen_Cons:Nil2_0(n518_0)) → gen_Cons:Nil2_0(n518_0), rt ∈ Ω(1 + n5180 + n51802)
Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))
No more defined symbols left to analyse.
(24) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
reverse(gen_Cons:Nil2_0(n518_0)) → gen_Cons:Nil2_0(n518_0), rt ∈ Ω(1 + n5180 + n51802)
(25) BOUNDS(n^2, INF)
(26) Obligation:
Innermost TRS:
Rules:
shuffle(
Cons(
xs)) →
Cons(
shuffle(
reverse(
xs)))
reverse(
Cons(
xs)) →
append(
reverse(
xs),
Cons(
Nil))
append(
Cons(
xs),
ys) →
Cons(
append(
xs,
ys))
shuffle(
Nil) →
Nilreverse(
Nil) →
Nilappend(
Nil,
ys) →
ysgoal(
xs) →
shuffle(
xs)
Types:
shuffle :: Cons:Nil → Cons:Nil
Cons :: Cons:Nil → Cons:Nil
reverse :: Cons:Nil → Cons:Nil
append :: Cons:Nil → Cons:Nil → Cons:Nil
Nil :: Cons:Nil
goal :: Cons:Nil → Cons:Nil
hole_Cons:Nil1_0 :: Cons:Nil
gen_Cons:Nil2_0 :: Nat → Cons:Nil
Lemmas:
append(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b)) → gen_Cons:Nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
Generator Equations:
gen_Cons:Nil2_0(0) ⇔ Nil
gen_Cons:Nil2_0(+(x, 1)) ⇔ Cons(gen_Cons:Nil2_0(x))
No more defined symbols left to analyse.
(27) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
append(gen_Cons:Nil2_0(n4_0), gen_Cons:Nil2_0(b)) → gen_Cons:Nil2_0(+(n4_0, b)), rt ∈ Ω(1 + n40)
(28) BOUNDS(n^1, INF)